Prestar munu yfirleitt vilja losna við prestskosningar. Samkvæmt áliti kirkjuþings í haust stendur samt ekki til að afnema þær. Ég kynni aðferð við kosningar, sem mér sýnist milda þau óþægindi, sem prestskosningar hafa valdið umsækjendum og sóknarbörnum.

 

Ýmsar aðferðir eru til til að kanna, hver þykir bestur, ef um fleiri en tvo er að tefla. Raðval er eina aðferðin, sem á við með fullum rökum, hversu margir sem kostirnir eru og hver sem úrslitin verða. Aðferðinni má lýsa með dæmi um prestskosningu, þar sem fjórir sækja um, A, B, C og D. Kjósandi á um það að velja að raða umsækjendum. Hann getur raðað þeim öllum:

 

1

A

4

B

2

C

3

D

 

 en hann getur líka tjáð sig á annan hátt. Til að mynda getur hann raðað tveimur efst, en látið vera að gera upp á milli hinna:

 

1

A

 

B

 

C

2

D

 

og hann getur lýst því, að hann kjósi einn helst og annan síst, en geri ekki upp á milli hinna:

 

1

A

 

B

4

C

 

D

 

Kjörstjórn metur raðirnar á seðlunum með stigagjöf. Röðin

 

1

A

4

B

2

C

3

D

 

segir, að A er talinn betri en þrír kostir (umsækjendur), B betri en tveir og C betri en einn. Þannig fær A 3 stig, B 2, C 1, en D ekkert stig. Röðin

 

1

A

2

B

3

C

4

D

 

segir, að B er talinn betri en þrír og gefur B þrjú stig, D betri en tveir og gefur D 2 stig, en A og C skipa þriðja og fjórða sæti og skipta með sér stiginu sem þriðji kosturinn fær í hlut.

 

Þetta fyrirkomulag breytir sjónarhóli kjósandans. Hann kann að hafa þá hugmynd, að kosningin standi milli B og D og vill frekar D, en kýs helst C. Þetta getur hann tjáð með röð sinni:

 

3

A

4

B

1

C

2

D

 

Það er ólíkt því sem oft verður með gildandi fyrirkomulagi þegar ástæða þykir til að vara menn við að kasta atkvæði sínu á vonlausan umsækjanda.

 

Ætla má að slíkar kosningar verði öðru vísi fyrir umsækjendur og mildari. Vitaskuld þarf einhver að bíta í það súra epli að hljóta fæst stig, og víst er það sárt, ef í ljós kemur að sá hefur oftast verið neðstur, en raðirnar kunna að leiða í ljós, að þeir sem efstir urðu klufu ekki söfnuðinn, heldur skiptust á um að sitja í efstu sætunum hjá mörgum sóknarbarnanna.

 

Menn meta að sjálfsögðu aðferðina með eigin rökum, en ekki spillir að þekkja söguna og reynsluna. Um aðferðina hefur verið rækilega fjallað í fræðiritum. Upphafsmaður hennar, frakkinn Borda, kynnti hana í vísindafélagi frakka árið 1770. Hún var tekin í notkun í félaginu við kjör á nýjum félögum, en Napóleon fékk hana afnumda. Annars vegar kynnti Borda aðferðina sem stigagjöf, en þá gefur röðin ABC A 3 stig, B 2 stig og C 1 stig. Hann sýndi fram á, stærðfræðingurinn, að niðurstaðan yrði hin sama, þótt lægsti kosturinn (C) fengi 0 stig í staðinn fyrir 1, en síðan hækkað um eitt stig fyrir hvert sæti. Hins vegar sagði hann vera um að ræða að bera saman alla kostina tvo og tvo í hverri röð og gefa kosti stig fyrir hvert sinn sem hann er yfir. Þessi hugsun hans týndist í tvær aldir, að bent var á að líta mætti á hverja röð sem mat á skákmönnum og þeim reiknuð stig með því að tefla þeim öllum saman. Umræðan snerist um það þessar aldir að bera ofangreinda stigagjöf saman við ýmsar aðrar reglur um stigagjöf án þess að athuga, að grundvallarhugsun var á bak við uppgjörið hjá Borda, en ekki við aðrar aðferðir við stigagjöf. Þetta er víst ekki dæmalaust í fræðasögu, að upphafsmaðurinn hugsi skýrast, en þeir sem á eftir koma týni hugsun hans.

 

Annað einkennir þau fræði sem aðferðin er sprottin úr. Menn hafa setið við skrifborðið og gruflað og borið saman í huganum ýmsar aðferðir, en ekki látið reyna á þær. Það telst því til tíðinda að fyrir tveimur árum hófst rannsókn á vegum norrænnar nefndar um þjóðfélagsrannsóknir til að fá óvenjulegar og merkilegar aðferðir reyndar. Við það hef ég unnið. Ég fékk raðval reynt á Snæfellsnesi í apríl 1994 þegar almenningur í fjórum sveitarfélögum var spurður álits um fimm hugmyndir um nafn á nýju sveitarfélagi sem átti að verða til við sameiningu. Ekki reyndust nein vandræði fyrir almenning að kjósa, þótt kjörseðillinn væri öðru vísi en menn eiga að venjast. Með aðstoð tölvuforrits gekk stigaútreikningur greiðlega. Raðvalið leiddi í ljós að þrjú nöfn fengu flest stig og álíka mörg, en eitt þeirra þriggja skar sig úr að því leyti að það var ýmist efst eða neðst í röðinni.

 

Síðar sama vor var samhliða hreppsnefndarkosningum lagt var fyrir kjósendur í 6 hreppum í Árnessýslu að taka afstöðu til framtíðar hreppsfélagsins. Spurt var hvort menn vildu hrepp sinn óbreyttan, samruna við nágrannasveitarfélög eitt eða fleiri, verulega sameiningu (efri og neðri hluti sýslunnar) eða að Árnessýsla öll yrði sveitarfélag. Reynslan meðal árnesinga varð hin sama, að það stóð ekki í fólki að nota kjörseðilinn.

 

Ég hygg að með prestskosningum með þessu lagi yrði niðurstaðan frekar en nú sú að segja megi að sá sem kosinn er teljist fremstur meðal jafningja. Þeir sem kusu helst einhvern annan reynast trúlega hafa raðað þeim sem sigraði í annað eða þriðja sæti og eiga því nokkurn hlut að kosningunni. Er ekki heppilegt að starf í nýju prestakalli hefjist þannig?

 

Kirkjuritinu 61 (1995) 3 40-41

að afnema þær. Ég kynni aðferð við kosningar, sem mér sýnist milda þau óþægindi, sem prestskosningar hafa valdið umsækjendum og sóknarbörnum.

Ýmsar aðferðir eru til til að kanna, hver þykir bestur, ef um fleiri en tvo er að tefla. Raðval er eina aðferðin, sem á við með fullum rökum, hversu margir sem kostirnir eru og hver sem úrslitin verða. Aðferðinni má lýsa með dæmi um prestskosningu, þar sem fjórir sækja um, A, B, C og D. Kjósandi á um það að velja að raða umsækjendum. Hann getur raðað þeim öllum:

1

A

4

B

2

C

3

D

 en hann getur líka tjáð sig á annan hátt. Til að mynda getur hann raðað tveimur efst, en látið vera að gera upp á milli hinna:

1

A

 

B

 

C

2

D

og hann getur lýst því, að hann kjósi einn helst og annan síst, en geri ekki upp á milli hinna:

1

A

 

B

4

C

 

D

Kjörstjórn metur raðirnar á seðlunum með stigagjöf. Röðin

1

A

4

B

2

C

3

D

segir, að A er talinn betri en þrír kostir (umsækjendur), B betri en tveir og C betri en einn. Þannig fær A 3 stig, B 2, C 1, en D ekkert stig. Röðin

1

A

2

B

3

C

4

D

segir, að B er talinn betri en þrír og gefur B þrjú stig, D betri en tveir og gefur D 2 stig, en A og C skipa þriðja og fjórða sæti og skipta með sér stiginu sem þriðji kosturinn fær í hlut.

Þetta fyrirkomulag breytir sjónarhóli kjósandans. Hann kann að hafa þá hugmynd, að kosningin standi milli B og D og vill frekar D, en kýs helst C. Þetta getur hann tjáð með röð sinni:

3

A

4

B

1

C

2

D

Það er ólíkt því sem oft verður með gildandi fyrirkomulagi þegar ástæða þykir til að vara menn við að kasta atkvæði sínu á vonlausan umsækjanda.

Ætla má að slíkar kosningar verði öðru vísi fyrir umsækjendur og mildari. Vitaskuld þarf einhver að bíta í það súra epli að hljóta fæst stig, og víst er það sárt, ef í ljós kemur að sá hefur oftast verið neðstur, en raðirnar kunna að leiða í ljós, að þeir sem efstir urðu klufu ekki söfnuðinn, heldur skiptust á um að sitja í efstu sætunum hjá mörgum sóknarbarnanna.

Menn meta að sjálfsögðu aðferðina með eigin rökum, en ekki spillir að þekkja söguna og reynsluna. Um aðferðina hefur verið rækilega fjallað í fræðiritum. Upphafsmaður hennar, frakkinn Borda, kynnti hana í vísindafélagi frakka árið 1770. Hún var tekin í notkun í félaginu við kjör á nýjum félögum, en Napóleon fékk hana afnumda. Annars vegar kynnti Borda aðferðina sem stigagjöf, en þá gefur röðin ABC A 3 stig, B 2 stig og C 1 stig. Hann sýndi fram á, stærðfræðingurinn, að niðurstaðan yrði hin sama, þótt lægsti kosturinn (C) fengi 0 stig í staðinn fyrir 1, en síðan hækkað um eitt stig fyrir hvert sæti. Hins vegar sagði hann vera um að ræða að bera saman alla kostina tvo og tvo í hverri röð og gefa kosti stig fyrir hvert sinn sem hann er yfir. Þessi hugsun hans týndist í tvær aldir, að bent var á að líta mætti á hverja röð sem mat á skákmönnum og þeim reiknuð stig með því að tefla þeim öllum saman. Umræðan snerist um það þessar aldir að bera ofangreinda stigagjöf saman við ýmsar aðrar reglur um stigagjöf án þess að athuga, að grundvallarhugsun var á bak við uppgjörið hjá Borda, en ekki við aðrar aðferðir við stigagjöf. Þetta er víst ekki dæmalaust í fræðasögu, að upphafsmaðurinn hugsi skýrast, en þeir sem á eftir koma týni hugsun hans.

Annað einkennir þau fræði sem aðferðin er sprottin úr. Menn hafa setið við skrifborðið og gruflað og borið saman í huganum ýmsar aðferðir, en ekki látið reyna á þær. Það telst því til tíðinda að fyrir tveimur árum hófst rannsókn á vegum norrænnar nefndar um þjóðfélagsrannsóknir til að fá óvenjulegar og merkilegar aðferðir reyndar. Við það hef ég unnið. Ég fékk raðval reynt á Snæfellsnesi í apríl 1994 þegar almenningur í fjórum sveitarfélögum var spurður álits um fimm hugmyndir um nafn á nýju sveitarfélagi sem átti að verða til við sameiningu. Ekki reyndust nein vandræði fyrir almenning að kjósa, þótt kjörseðillinn væri öðru vísi en menn eiga að venjast. Með aðstoð tölvuforrits gekk stigaútreikningur greiðlega. Raðvalið leiddi í ljós að þrjú nöfn fengu flest stig og álíka mörg, en eitt þeirra þriggja skar sig úr að því leyti að það var ýmist efst eða neðst í röðinni.

Síðar sama vor var samhliða hreppsnefndarkosningum lagt var fyrir kjósendur í 6 hreppum í Árnessýslu að taka afstöðu til framtíðar hreppsfélagsins. Spurt var hvort menn vildu hrepp sinn óbreyttan, samruna við nágrannasveitarfélög eitt eða fleiri, verulega sameiningu (efri og neðri hluti sýslunnar) eða að Árnessýsla öll yrði sveitarfélag. Reynslan meðal árnesinga varð hin sama, að það stóð ekki í fólki að nota kjörseðilinn.

Ég hygg að með prestskosningum með þessu lagi yrði niðurstaðan frekar en nú sú að segja megi að sá sem kosinn er teljist fremstur meðal jafningja. Þeir sem kusu helst einhvern annan reynast trúlega hafa raðað þeim sem sigraði í annað eða þriðja sæti og eiga því nokkurn hlut að kosningunni. Er ekki heppilegt að starf í nýju prestakalli hefjist þannig?

Kirkjuritinu 61 (1995) 3 40-41